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Abstract. In order to simulate a Superheated-Superconducting detector which is under construction for
Particle Physics purposes, we study a bidimensional lattice of small superconducting spheres placed in an
external magnetic field. We propose a model to study the diamagnetic interactions among the spheres and
solve it using numerical Monte-Carlo techniques. New phenomena are found and the ensuing results are
analyzed. Finally it is proposed a qualitative explanation.

1 Introduction

The particle physics tendencies in the last years need
of new non conventional detection methods which are
presently under development. Among them, the use of
superheated- superconducting granules (SSG) has been
proposed for photon, dark matter and neutrinos detec-
tion [1] The SSG detectors are made of small grains
(of a few microns of diameter) of type I superconduct-
ing metals which undergo a first order phase transition
between normal and superconducting states. As in any
other first order phase transition, metastable states can
be reached if for a fixed temperature (below the critical
one) the strength of the applied magnetic field B ≡ B
varies between Bsc ≡ |Bsc | and Bsh ≡ |Bsh |. Starting
with a normal conducting sample in an external magnetic
field B > Bc ≡ | Bc | and decreasing the strength of
B, the sample remains in a metastable normal state (su-
percooled) until certain value B = Bsc < Bc is reached;
at this point the transition to the superconducting state
occurs. In the same way, starting from a superconduct-
ing sample, the field strength can be increased above Bc
without phase transition and the sample remains in a
metastable superconducting state (superheated) until cer-
tain value B = Bsh > Bc is reached; at this point the
sample becomes normal conducting.

As any other metastable state, the superheated state
is very sensitive to the existing defects at the surface of
the superconductor, however for very small grains with an
extremely carefully prepared surface it is possible to ob-
tain the superheated state in externally applied magnetic
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fields very near of Bsh. For such grains, the deposition of
a few KeV of energy into a given grain will flip it into
the normal state, thereby producing a change of magnetic
flux which can be detected in a pickup coil connected to a
SQUID or other sensitive circuit. In this way, SSG detec-
tors act as threshold devices, and the energy information
must be obtained by making different measurements at
different applied external fields and differentiating the re-
sults. Furthermore, by using an appropriated lattice of
pickup coils, the spatial information about the particles
trajectories can be stored, improving the efficiency of the
detector.

The fact that a SSG detector can be sensible to the
deposition of energies so low as a few KeV. is important
specially for neutrino detection, where a SSG based detec-
tor could be sensible to coherent neutral current neutri-
nonucleus scattering [2], where the cross section is about
1000 times larger than that of other processes like inverse
beta decay; thus a SSG detector with a few kilograms
would measure the same event rate as a multiton detec-
tor based on other processes. For real detectors, in order
to discriminate between interesting and non interesting
events taking place in the detector, it is very important
that one can simulate the physics of the detector which
in the present case is limited by the existence of diamag-
netic interactions between the superconducting spheres.
There is little theoretical and experimental information
about this kind of interactions so that we propose a sim-
plified model to study. The system we will work over is
the following:

1. We will work with a bidimensional lattice made by
small superconducting spheres placed on its sites, all
of them with the same radius a and lattice spacing con-
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stant R (distance between the centers of consecutive
spheres). This lattice is on the influence of a uniform
magnetic field perpendicular to the plane of the lattice.

2. We will neglect the penetration of the magnetic field
into the superconducting spheres. This is justified
when the separation among sphere’ surfaces is greater
than a 5 per cent of their radii.

3. Our sample will be always at constant temperature,
that means we assume that the lattice is in contact
with a good thermalizer so we can neglect the latent
heat released by the transition of a granule. In prin-
ciple it is not difficult to incorporate this effect into
the simulation, but as long as we are not interested
in the avalanche effect [3] we will assume that the
temperature of the lattice is always constant.

4. We will assume that a superconducting grain reaches
completely the normal state as soon as at any point on
its surface the magnetic field value is greater than Bsh.
This assumption is certainly correct if the external field
strength Bex is larger than Bc as it will be our case.

The magnetostatic interactions between perfectly dia-
magnetic spheres, placed in an external magnetic field
have been studied by U. Geigenmüller and P. Mazur [4]
who translated this problem into that of the electrostatic
interactions between dielectric spheres; in what follows we
shall use their results.

2 Mathematical development

In this section we recall the main results on the magnetic
interactions between diamagnetic spheres, which are ap-
plied in the numerical simulation. We consider a set of per-
fectly spherical superconducting grains, all of then with a
radius a, placed on the sites of a lattice, since in the space
between the superconducting spheres there is no density
current and magnetization, the magnetic field B is gov-
erned by the two Maxwell equations:

∇×B(r) = 0
∇ ·B(r) = 0 (1)

so we can write
B(r) = −∇U(r) (2)

outside the spheres. Equations (1) and (2) imply that the
potential U satisfies the Laplace equation.

∆U(r) = 0 (3)

with the following boundary conditions:

1. Due to the Meissner-Oschenfeld effect and the continu-
ity of the magnetic field in the interphase, the normal
component of B(r) on the surface of the spheres is
null, so [

∂

∂r
U (Ri + r)

]
r=a

= 0 (4)

where Ri is the position of the center of the sphere i
and a is the radius of the spheres.

2. If we separate far enough of the spheres, the magnetic
field must be the applied one Bex

lim
r→∞

−∇U(r) = Bex (5)

Solving the Laplace equation for the potential U , with
this two boundary conditions, we can get a general solu-
tion. This is a difficult task which can be made easier in
the case where the dominant contributions come from the
two-body interactions (which really dominates for dilute
or semidilute lattices). In this approximation the field at
the surface of each grain is evaluated as a sum of two-body
interactions, neglecting those of higher order. As shown in
[4], this approximation corresponds to a development in
series of the density of microspheres per unit area. In this
case, the magnetic field B1 on the surface of a sphere
located at the origin when a second one is placed at a dis-
tance R along the z direction, with an external magnetic
field directed along the positive x direction is:

| B1(θ, ϕ) |2
| Bex |2

= (cos θ sinϕ)2

[ ∞∑
q=1

(q − 1)!P ′′q (cos θ)dq

]2

− (cos θ sinϕ)2

×
[ ∞∑
q=1

(q − 1)!
(
P ′q(cos θ) + cos θP ′′q (cos θ)

)
dq

]2

+

( ∞∑
q=1

(q − 1)!P ′q(cos θ)dq

)2

(6)

where (θ, ϕ) are the polar coordinates on the sphere 1,
P ′(cos θ) and P ′′(cos θ) are the 1st. and 2nd. derivatives
of the Legendre polynomials and dq are coefficients which
depends on the ratio a/R. Equation (6) comes from a mul-
tipole expansion and the dq are determined through a sys-
tem of linear equations:

d′q = (−1)q+1 (q + 1)!
2q + 1

dq

d′q = δ1,q +
∞∑
p=1

(p+ q)!
p!q!

pq

(q + 1)(p+ 1)

( a
R

)p+q+1

d′p (7)

The above equations can be solved numerically if one
cuts them at a suitable multipole order qmax since then
(7) is reduced to a system of qmax equations. In practice,
qmax is chosen such that B1 does not change within the
desired accuracy when we retain more than qmax terms
in (7). For a given accuracy, the value of qmax strongly
depends on the ratio R/a and increases dramatically for
values of R/a ≤ 2.1. We have checked, in accordance with
[4] that for R/a ≥ 2.5 it is enough to take qmax = 15 to
obtain B1 with a precision of 0.1 % (see Fig.1).

The contribution of the second sphere to the magnetic
field on the surface of the first (B2→1 ) can be obtained
by subtracting to B1 the magnetic field B0 on the surface
of an isolated sphere placed on an external magnetic field
Bex.

B2→1 = B1 −B0 (8)
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Fig. 1. Maximum value of B2→1 in units of Bex as a function
of the number of multipoles taken into account

Because the problem of the two spheres is invariant
under rotations along the external field direction, we can
evaluate easily the contribution to the magnetic field on
the surface of a given sphere due to the presence of any
other, when both are in the plane y − z simply rotating
(6) (which means to redefine properly the angles (θ, ϕ)
and use the new value of a/R in (7)).

3 Simulation and results

Limited by the memory capacity and CPU time of our
computer, we work in a 100× 100 lattice which is enough
large to avoid the boundary effects to be important. We
have divided the neighbour spheres of a given one in con-
secutive layers. For a fixed sphere in the lattice, the near-
est eight grains constitute the first layer, the next sixteen
ones the second layer, the next twenty four ones the third
layer and so on (see Fig.2).

Considering the diamagnetic interactions as a sum of
two-body interactions, to each value of R/a and for a given
error, there is a limiting distance D such that the mag-
netic field on the surface of a given sphere is not affected,
to the desired precision, by the presence of other spheres
at a distance greater than D. That means we neglect the
interactions between spheres which are faraway enough.
In this way, in our simulation, the magnetic field on the
surface of each grain is evaluated by adding all the con-
tributions coming from the spheres placed in the nearest
three or four layers and then we sum all these contribu-
tions with the magnetic field of an isolated sphere; this
is made for each grain in the lattice and we perform the
following steps:

1. We fix a certain external magnetic field Bex and we
evaluate the maximum field strength on the surface of
each sphere, taking into account all two-body diamag-
netic interactions.

2. We count the number of superconducting spheres
which have a field strength larger or equal than Bsh in
at least a point of their surface.

3. We choose a grain of those before specified in a random
way. This grain undergoes the phase transition, and
consequently, the magnetic field in the spheres on its

Fig. 2. First three layers surrounding a given sphere

neighbourhood decreases. This process simulates the
fact that in any realistic situation, not all the spheres
will be identical and some imperfections will be ran-
domly distributed.

4. The previous step involves a recalculation of the mag-
netic field on the surface of all of the neighbouring
spheres which interacts with the transited grain.

5. We return to the second step until the number of
spheres able to undergo the phase transition, for a
given value of the external field is null. In this case,
we increase the value of the external field.

6. We make again the steps from two to five until all
spheres were in the normal state.

As a result, we get the fraction of superconducting
spheres versus the external magnetic field strength. In first
place we have done the simulation for a value of R/a = 2.5
and considering that each grain only interacts with the
spheres placed in the interior of its 2, 3 or 4 neighbour
layers (that is, only the interactions of each grain with its
24, 48 or 80 neighbour spheres are taken into account);
the results are plotted in Fig. 3 where one can see that
the difference between considering three or four layers are
of the same order than the statistical errors, so in what
follows we will take only three layers; that is, each grain
will interact only with its 48 nearest spheres. The results of
our simulation are sumarized in Fig. 4 where the fraction
F of superconducting spheres is plotted as a function of
the external magnetic field Bex for different values of the
ratio R/a. The main two points to take into account are:

(a) Instead of a monotonously decreasing curve for the
shorter lattice constant R (in units of a) we find three
sections, two decreasing ones and between them a plain
zone where F is insensitive to small variations of Bex.
However for higher values of R/a we get a continuous fall.

(b) The plateau evolves with R/a until its disappear-
ance, but it is always located at F (Bex) = 0.3 as it is
shown in the plot.

The plateau can be explained, at least qualitatively, in
the following way: For higher values of R, we are working
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Fig. 3. Fraction of superconducting spheres as a function of
the external magnetic field strength, when the interactions of
each grain with the spheres placed in the two, three or four
nearest layers are considered

in a dilute regime (one sphere is faraway from the oth-
ers) so the diamagnetic interactions between them are not
very important and each time a sphere becomes normal
conducting it does not affect very much to the spheres
which are located on its neighbourhood; consequently, the
plot shows a rapidly decreasing function with increasing
field strength (for R → ∞ the plot should approach to
a step θ function). At lower values on R, we are working
in a more concentrate regime (each sphere is close to its
neighbours) so the diamagnetic interactions among them
become crucial and when a sphere becomes normal con-
ducting it strongly decreases the maximum field strength
on the surface of its neighbours. In this way the falling
of the fraction of superconducting spheres with increasing
field strength is lower than in the dilute regime, and it
forces an effective dilution of the system (a given super-
conducting grain becomes far and far from its neighbour
superconducting spheres).

Between both regimes and interpolating between
them, there is the “plateau”; its existence is a conse-
quence of the evolution of the system during the concen-
trate regime and the fact that the diamagnetic interactions
between the spheres are now less important as a conse-
quence of the effective dilution of the system. However,
we have not found any theoretical explanation to the fact
that the plain zone is always located at F (Bex) = 0.3 in-
dependently of the initial value of R (2 < R/a ≤ 3.5); this
fact could be related with some property of self-organized
systems, a matter which is presently under study.

4 Conclusions

We have done the simulation of a superconducting lattice
of micrograins in metastable state in two dimensions put

Fig. 4. Fraction of superconducting spheres versus applied
field strength for different c = R/a ratios and three layers

into a perpendicular external magnetic field. In this sys-
tem we have studied the diamagnetic interactions among
the microspheres and we have obtained the ratio of super-
conducting spheres versus applied magnetic field. These
graphics show, for the lower ratios R/a studied (R is the
lattice constant and a the spheres’ radius), the appear-
ance of a “plateau” while for higher ratios R/a it disap-
pears. We have interpreted the “plateau” as an interpo-
lation state between two qualitatively differents dilution
regimes: initially homogenization and, at the end, regular
dilution.

From the experimental point of view, the existence of
the plateau at small values of R/a is important since it
could lower the efficiency of the detector, nowadays this
fact has to be proved experimentally and actually it is an
open question.
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